Research Groups

Portrait Moritz Kreysing

Moritz Kreysing

Biophotonics and self-organization

Previous and Current Research

1) Optical constraints on retinal development

The first part of our research addresses one of the vertebrate retina’s most surprising, but least investigated characteristics, its optical architecture: since the sensitive portions of the photoreceptor cells are found on the back of the retina, light needs to travel through several layers of living neuronal tissue before being detected. What is usually regarded as being a problem of neuronal activity is complemented from the perspective of optics, focusing on one key question: how does the retina deal with incident light?

When looking through a piece of freshly excised retinal tissue, in front of a dark background, it appears slightly opaque and silky (Fig.1, left).  Any attempt to see through this retina is only successful as long as the object behind it is in the closest proximity to this tissue, clearly indicating strong interaction of light with the tissue, that would not occur in a truly transparent medium, such as the homogeneous and isotropic vitreous humor (Fig. 1, right). Quantitative measurements on the inner retina reveal that despite being scattering in the far-field, retinal tissue possesses a high ability to transfer an image from its inner surface to the back of the outer nuclear layer.

Using custom design microscopes we are aiming to gain a detailed understanding of optical constrains on retinal development that have previously been shown to be present down to the level of the chromatin organization. Apart from its importance for the initiation of the visual process, light propagation in neuronal tissues is also key to the optical observation of brain activity over large scales. Our experimental research is accompanied by theoretical and computer modeling of light tissue interaction.

2) Advanced laser manipulation of biological cells

In the past, we developed a tool for the contact-free manipulation of biological samples. The optical cell rotator technology is able to orient individual cells under any microscope thus paving the way for optical tomography of suspended cells.

Moritz Kreysing research: figure
Future Projects and Goals

Furthermore, we are interested in the manipulation and perturbation of self organizing systems with well defined physical stimuli. These include spatially varying temperature distributions (i.e. to locally trigger gene expression or concentration changes) as well as mechanical stimuli to interfere with biological reaction-diffusion systems.  In addition to understanding modern cells and organisms we are exploring the question how lifeless molecules started evolution in the first place.

Methodological and Technical Expertise
  • Focussed light induced cytoplasmic streaming (FLUCS)
  • Computational optics optics
  • Thermophoresis and diffusion systems
Selected Publications

Kreysing, M., Pusch, R., Haverkate, D., Landsberger, M., Engelmann, J., Ruiter, J., Mora-Ferrer, C., Ulbricht, E., Grosche, J., Franze, K., Streif, S., Schumacher, S. Makarov, F., Kacza, J., Guck, J., Wolburg, H., Bowmaker, J., v.d. Emde, G., Schuster, S., Wagner, H.J., Reichenbach, A., Francke, M.
Photonic Crystal Light Collectors in Fish Retina Improve Vision in Turbid Water.
Science, 336(6089), 1700–1703 (2012)

Solovei, I., Kreysing, M., Lanctôt, C., Kösem, S., Peichl, L., Cremer, T., Guck, J. and, Joffe, B.
Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution.
Cell, 137(2), 356–368 (2009)

Kreysing, M., Fritsch, A., Dietrich, C., Guck, J. , & Käs, J.
The optical cell rotator.
Optics express, 16(21), 16984–16992 (2008)


since 2014
Group leader at the Max-Planck-Institute of Molecular Cell Biology and Genetics in Dresden

Postdoctoral researcher, Lab for Systems Biophysics, University of Munich

PhD, Department of Physics, University of Cambridge

M. Sc. in Physics (Optics and Biophysics), University of Leipzig, Germany


Max Planck Institute of Molecular Cell Biology and Genetics
Pfotenhauerstraße 108
01307 Dresden